Marginal values of Stochastic Games: How fragile is my game?

L. Attia² R. Saona¹ M. Oliu-Barton²

 1 ISTA

²CEREMADE, CNRS, Université Paris Dauphine, PSL Research Institute

Models are approximations

A model is an approximation of reality. Conclusions should approximately hold on perturbed models. Such an approximation is better quantified.

Value Strategies

Example, perturbed

$$
M = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}
$$

The optimal strategy is given by,

$$
p^* = \left(\frac{1}{2}, \frac{1}{2}\right)^\top.
$$

Therefore,

$$
\mathsf{val} \, \mathsf{M} = 0 \, .
$$

Example, perturbed

Consider $\varepsilon > 0$.

$$
M(\varepsilon)=\begin{pmatrix}1&-1\\-1&1\end{pmatrix}+\begin{pmatrix}1&-3\\0&2\end{pmatrix}\varepsilon.
$$

The optimal strategy is given by, for $\varepsilon < 1/2$,

$$
p_{\varepsilon}^* = \left(\frac{1+\varepsilon}{2+3\varepsilon}, \frac{1+2\varepsilon}{2+3\varepsilon}\right)^{\top}
$$

Therefore,

$$
\mathsf{val} \mathsf{M}(\varepsilon) = \frac{\varepsilon^2}{2+3\varepsilon} \, .
$$

.

Example, perturbed 2

Consider $\varepsilon > 0$.

$$
M(\varepsilon)=\begin{pmatrix}1&-1\\-1&1\end{pmatrix}+\begin{pmatrix}-1&3\\0&-2\end{pmatrix}\varepsilon.
$$

The optimal strategy is given by, for $\varepsilon < 2/3$,

$$
\pmb{p}_{\varepsilon}^* = \left(\frac{1-\varepsilon}{2-3\varepsilon}, \frac{1-2\varepsilon}{2-3\varepsilon}\right)^\top
$$

Therefore,

$$
\mathsf{val} \mathsf{M}(\varepsilon) = \frac{\varepsilon^2}{2-3\varepsilon} \, .
$$

.

Questions

Definition (Value-positivity problem)

Is the value function increasing?

Definition (Functional form problem)

What is the value function and some optimal strategy function?

Definition (Uniform value-positivity problem)

Can the max-player guarantee the unperturbed value in the perturbed game with a fixed strategy?

Question for Stochastic Games

Definition (Marginal value)

Consider a stochastic game Γ and a perturbation H. The marginal value is

$$
D_H \text{ val}(\Gamma) \coloneqq \lim_{\varepsilon \to 0^+} \frac{\text{val}(\Gamma + H\varepsilon) - \text{val}(\Gamma)}{\varepsilon},
$$

i.e., the right derivative at zero of $\varepsilon \mapsto \text{val}(\Gamma + H\varepsilon)$.

To appear in Mathematics of Operations Research https://doi.org/10.1287/moor.2023.0297

Preliminaries

Stochastic Games

Stcohastic games. A game $\Gamma = (K, k, l, J; g, q, \lambda)$, where

- \bullet K is a finite set of states.
- $k \in K$ is the initial state,
- \bullet I and J are the finite action sets respectively of Player 1 and 2,
- $g: K \times I \times J \rightarrow \mathbb{R}$ is the payoff function,
- q: $K \times I \times J \rightarrow \Delta(K)$ is the transition function, and
- $\bullet \lambda \in [0,1]$ is the discount rate.

Payoff and Values

Payoff. $\gamma_\lambda(\sigma,\tau)\coloneqq \mathbb{E}_{\sigma,\tau}^k$ $\sqrt{ }$ \mathcal{L} \sum m≥1 $\lambda(1-\lambda)^{m-1} \, \mathsf{G}_m$ \setminus $\overline{1}$ $\gamma_0(\sigma,\tau)\coloneqq \mathbb{E}_{\sigma,\tau}^k$ $\sqrt{ }$ $\liminf_{\lambda\to 0}$ \sum $m \geq 1$ $\lambda(1-\lambda)^{m-1} \mathsf{G}_m$ \setminus $\overline{1}$

Value.

$$
\mathsf{val}(\Gamma) \coloneqq \sup_{\sigma} \inf_{\tau} \gamma_{\lambda}(\sigma, \tau).
$$

Perturbation

Perturbation.

$$
H=(\tilde{g},\tilde{q},\tilde{\lambda}),
$$

where

\n- $$
\tilde{g}: K \times I \times J \to \mathbb{R}
$$
\n- $\tilde{q}: K \times I \times J \to \mathbb{R}$
\n- $\tilde{\lambda} \in \mathbb{R}$
\n

are such that $(\Gamma + H\varepsilon)$ is a stochastic game for small enough ε .

Note: No perturbation of available strategies.

Example

Example, perturbed

Previous results

[Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0)

Mills 1956

Theorem

Consider a matrix game M_0 . For all perturbations M_1 ,

$$
D_{M_1} \text{val}(M_0) = \max_{p \in P(M_0)} \min_{q \in Q(M_0)} p^{\top} M_1 q.
$$

In other words, defining $M(\varepsilon) = M_0 + M_1 \varepsilon$,

 D_{M_1} val $(M_0) = \mathsf{val}_{O^*(M_0)}(D\,M(0))$.

[Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0)

Kohlberg 1974

Theorem

There is a stochastic game such that

$$
\mathsf{val}(\Gamma_\lambda) = \frac{1-\sqrt{\lambda}}{1-\lambda} = 1-\sqrt{\lambda} + o(\sqrt{\lambda}).
$$

[Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0)

Filar and Vrieze 1997

Theorem

Consider a stochastic game Γ with $\lambda > 0$. For all perturbations H,

$$
|\mathsf{val}(\Gamma + H\varepsilon) - \mathsf{val}(\Gamma)| \leq \frac{\varepsilon}{\lambda} C(\Gamma, H).
$$

[Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0)

Solan 2003

Theorem

Consider a stochastic game Γ with $\lambda \geq 0$. For all perturbations H that neither perturb the discount factor $(\tilde{\lambda} = 0)$ nor introduce new transitions,

$$
|\mathsf{val}(\Gamma + H\varepsilon) - \mathsf{val}(\Gamma)| \leq \varepsilon \, C(\Gamma, H).
$$

[Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0)

Semi-algebraic theory

Theorem

Consider a stochastic game Γ with $\lambda > 0$. For a perturbations H, where, if $\lambda = 0$, then H does not introduce new transitions, then

 $\varepsilon \mapsto$ val($\Gamma + H\varepsilon$) is a Puiseux series.

[Preliminaries](#page-7-0) [Previous results](#page-13-0) [Results](#page-21-0) [Wrapping up](#page-31-0) [Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0) State of affairs

In many reasonable cases, the marginal value exists.

How can we compute it?

[Matrix games](#page-14-0) [Impossibility](#page-15-0) [Bounds](#page-16-0) [Semi-algebraic theory](#page-18-0)

Oliu-Barton and Attia 2019

Theorem

Consider a stochastic game Γ with $\lambda > 0$. Then, val(Γ) is the unique solution of

$$
\mathsf{val}(\Delta^k - z \Delta^0) = 0\,,
$$

where Δ^k and Δ^0 are matrices constructed from Γ and Δ^0 is strictly positive.

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Results

Raimundo Saona [Marginal values of Stochastic Games](#page-0-0)

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Marginal discounted value

Theorem

Consider a stochastic game Γ with $\lambda > 0$ and a perturbation H. Then, D_H val(Γ) is the unique $z \in \mathbb{R}$ satisfying

$$
\mathsf{val}_{O^*(\Gamma)}\left(D_\mathsf{H}\,\Delta^k - \mathsf{val}(\Gamma)\,D_\mathsf{H}\,\Delta^0 - z\,\Delta^0\right) = 0\,.
$$

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Marginal undiscounted value

Theorem

Consider a stochastic game Γ with $\lambda = 0$ and a (undiscounted) perturbation $H = (\tilde{g}, \tilde{q}, \tilde{\lambda} = 0)$. Asume that $\varepsilon \mapsto \text{val}(\Gamma + H_{\varepsilon})$ is continuous at zero. Let p be a polynomial such that, for all $\varepsilon > 0$ small enough,

 $p(\varepsilon, \text{val}(\Gamma + H \varepsilon)) = 0$

and such that $\partial_2 p(0, val(\Gamma)) \neq 0$. Then,

$$
D_H \text{ val}(\Gamma) = -\frac{\partial_1 p(0, \text{val}(\Gamma))}{\partial_2 p(0, \text{val}(\Gamma))}.
$$

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Sketch proof: Marginal discounted value

Sketch proof.

For every ε , define the matrix game $M(\varepsilon)\coloneqq \Delta_\varepsilon^k - \mathsf{val}(\Gamma + H\varepsilon) \Delta_\varepsilon^0.$ By Oliu-Barton and Attia, for all ε , we have val $(M(\varepsilon)) = 0$. Differentiating, by Mills, we have

$$
D \text{ val}(M)(0) = \text{val}_{O^*M(0)}(D M(0))
$$

= val_{O^*M(0)}(*D_H* Δ^k – val(Γ) *D_H* Δ^0 – *D_H* val(Γ) Δ^0)
= 0.

Half-true: $O^*M(0) = O^*(\Gamma)$ is not proven in full generality. Instead, take optimal strategies and Taylor approximations.

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Sketch proof: Marginal undiscounted value

Sketch proof.

Consider the polynomial p such that $p(\varepsilon, val(\Gamma + H\varepsilon)) = 0$ and $\partial_2 p(0, val(\Gamma)) \neq 0$. Differentiating, we obtain

 $D p(\cdot, val(\Gamma + H \cdot))(0) = \partial_1 p(0, val(\Gamma)) + \partial_2 p(0, val(\Gamma)) D_H val(\Gamma) = 0.$

Reordering

$$
D_H \text{ val}(\Gamma) = -\frac{\partial_1 p(0, \text{val}(\Gamma))}{\partial_2 p(0, \text{val}(\Gamma))}.
$$

Great, but where does p come from?

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Matrices Δ^k and Δ^0 , explained

Consider the perturbed Big Match. Fix a pure stationary strategy $(i, j) = (Top, Left)$. The induced Markov Chain has payoffs

$$
g(i,j)=(1,1+\varepsilon,0)^\top
$$

and transition matrix

$$
Q(i,j) = \begin{pmatrix} 1 & 0 & 0 \\ 1 - \varepsilon & \varepsilon & 0 \\ 1 & 0 & 1 \end{pmatrix}
$$

Then,

$$
\Delta^0_{\varepsilon}(i,j)=\det\!\left(d-(1-\lambda)Q\right)=\lambda^2(1-\varepsilon(1-\lambda))\,.
$$

Also,

$$
\Delta_{\varepsilon}^k(i,j)=\lambda^2(1+\varepsilon).
$$

Raimundo Saona [Marginal values of Stochastic Games](#page-0-0)

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Example, perturbed

Raimundo Saona [Marginal values of Stochastic Games](#page-0-0)

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Oliu-Barton and Attia 2019

Theorem

Consider a stochastic game Γ with $\lambda > 0$. Then, val(Γ) is the unique solution of

$$
\mathsf{val}(\Delta^k - z \Delta^0) = 0\,,
$$

where Δ^k and Δ^0 are matrices constructed from Γ and Δ^0 is strictly positive.

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Origin of polynomial for marginal undiscounted value

Theorem

Consider a stochastic game Γ with $\lambda = 0$ and a (undiscounted) perturbation $H = (\tilde{g}, \tilde{g}, \tilde{\lambda} = 0)$. Then, there is an explicit finite set of candidate polynomials including a polynomial p such that

 $p(\varepsilon, \text{val}(\Gamma + H\varepsilon)) = 0$

but not necessarily $\partial_2 p(0, val(\Gamma)) \neq 0$.

[Main Statements](#page-22-0) [Sketch proofs](#page-24-0) [Minor Statements](#page-29-0)

Limit and marginal value

We know that

$$
\lim_{\lambda\to 0} \mathsf{val}(\Gamma_\lambda) = \mathsf{val}(\Gamma_0)\,.
$$

Does this occur with the marignal values? No,

$$
\lim_{\lambda\to 0} D_H \text{ val}(\Gamma_\lambda) \neq D_H \text{ val}(\Gamma_0).
$$

Wrapping up

Marginal discounted value

Theorem

Consider a stochastic game Γ with $\lambda > 0$ and a perturbation H. Then, D_H val(Γ) is the unique $z \in \mathbb{R}$ satisfying

$$
\mathsf{val}_{O^*(\Gamma)}\left(D_\mathsf{H}\,\Delta^k - \mathsf{val}(\Gamma)\,D_\mathsf{H}\,\Delta^0 - z\,\Delta^0\right) = 0\,.
$$

Marginal undiscounted value

Theorem

Consider a stochastic game Γ with $\lambda = 0$ and a (undiscounted) perturbation $H = (\tilde{g}, \tilde{q}, \tilde{\lambda} = 0)$. Asume that $\varepsilon \mapsto \text{val}(\Gamma + H_{\varepsilon})$ is continuous at zero. Let p be a polynomial such that, for all $\varepsilon > 0$ small enough,

 $p(\varepsilon, \text{val}(\Gamma + H \varepsilon)) = 0$

and such that $\partial_2 p(0, val(\Gamma)) \neq 0$. Then,

$$
D_H \text{ val}(\Gamma) = -\frac{\partial_1 p(0, \text{val}(\Gamma))}{\partial_2 p(0, \text{val}(\Gamma))}.
$$

Question for Stochastic Games

Definition (Marginal value)

Consider a stochastic game Γ and a perturbation H. The marginal value is

$$
D_H \text{ val}(\Gamma) \coloneqq \lim_{\varepsilon \to 0^+} \frac{\text{val}(\Gamma + H\varepsilon) - \text{val}(\Gamma)}{\varepsilon},
$$

i.e., the right derivative at zero of $\varepsilon \mapsto \text{val}(\Gamma + H\varepsilon)$.

To appear in Mathematics of Operations Research https://doi.org/10.1287/moor.2023.0297

Questions

Definition (Value-positivity problem)

Is the value function increasing?

Definition (Functional form problem)

What is the value function and some optimal strategy function?

Definition (Uniform value-positivity problem)

Can the max-player guarantee the unperturbed value in the perturbed game with a fixed strategy?

Extras

Raimundo Saona [Marginal values of Stochastic Games](#page-0-0)

Perturbing the discount factor in Stochastic Games

Consider a Stochastic Game Γ and its parametrized polynomial matrix game $M_z \coloneqq \Delta^k - z \Delta^0$.

Lemma (Value-positivity)

For all $z \in \mathbb{R}$, if M_z is value-positive, then, for all small λ ,

val $\sqrt{\ }$ > z.

Lemma (Uniform value-positivity)

For all $z \in \mathbb{R}$, if M_z is uniform value-positive, then there exists a fixed strategy $p \in (\Delta[m])^n$ such that, for all λ sufficiently small,

val $_{\lambda}(\Gamma;p) \geq z$.