
Preliminaries
Previous results

Results
Wrapping up

Marginal values of Stochastic Games:
How fragile is my game?

L. Attia2 R. Saona1 M. Oliu-Barton2

1ISTA
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Models are approximations

A model is an approximation of reality.
Conclusions should approximately hold on perturbed models.
Such an approximation is better quantified.

Value Strategies
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Example, perturbed

M =

(
1 −1
−1 1

)
The optimal strategy is given by,

p∗ =

(
1

2
,
1

2

)⊤
.

Therefore,
valM = 0 .
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Example, perturbed

Consider ε > 0.

M(ε) =

(
1 −1

−1 1

)
+

(
1 −3
0 2

)
ε .

The optimal strategy is given by, for ε < 1/2,

p∗ε =

(
1 + ε

2 + 3ε
,
1 + 2ε

2 + 3ε

)⊤
.

Therefore,

valM(ε) =
ε2

2 + 3ε
.
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Example, perturbed 2

Consider ε > 0.

M(ε) =

(
1 −1

−1 1

)
+

(
−1 3
0 −2

)
ε .

The optimal strategy is given by, for ε < 2/3,

p∗ε =

(
1− ε

2− 3ε
,
1− 2ε

2− 3ε

)⊤
.

Therefore,

valM(ε) =
ε2

2− 3ε
.
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Questions

Definition (Value-positivity problem)

Is the value function increasing?

Definition (Functional form problem)

What is the value function and some optimal strategy function?

Definition (Uniform value-positivity problem)

Can the max-player guarantee the unperturbed value
in the perturbed game with a fixed strategy?

Raimundo Saona Marginal values of Stochastic Games
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Question for Stochastic Games

Definition (Marginal value)

Consider a stochastic game Γ and a perturbation H.
The marginal value is

DH val(Γ) := lim
ε→0+

val(Γ + Hε)− val(Γ)

ε
,

i.e., the right derivative at zero of ε 7→ val(Γ + Hε).

To appear in Mathematics of Operations Research
https://doi.org/10.1287/moor.2023.0297
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Preliminaries
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Stochastic Games

Stcohastic games. A game Γ = (K , k , I , J; g , q, λ), where

K is a finite set of states,

k ∈ K is the initial state,

I and J are the finite action sets respectively of Player 1 and 2,

g : K × I × J → R is the payoff function,

q : K × I × J → ∆(K ) is the transition function, and

λ ∈ [0, 1] is the discount rate.

Raimundo Saona Marginal values of Stochastic Games



Preliminaries
Previous results

Results
Wrapping up

Payoff and Values

Payoff.

γλ(σ, τ) := Ek
σ,τ

∑
m≥1

λ(1− λ)m−1Gm


γ0(σ, τ) := Ek

σ,τ

lim inf
λ→0

∑
m≥1

λ(1− λ)m−1Gm


Value.

val(Γ) := sup
σ

inf
τ
γλ(σ, τ) .
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Perturbation

Perturbation.
H = (g̃ , q̃, λ̃) ,

where

g̃ : K × I × J → R
q̃ : K × I × J → R
λ̃ ∈ R

are such that (Γ + Hε) is a stochastic game for small enough ε.

Note: No perturbation of available strategies.
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Example
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Example, perturbed
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Matrix games
Impossibility
Bounds
Semi-algebraic theory

Previous results
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Matrix games
Impossibility
Bounds
Semi-algebraic theory

Mills 1956

Theorem

Consider a matrix game M0. For all perturbations M1,

DM1val(M0) = max
p∈P(M0)

min
q∈Q(M0)

p⊤M1q .

In other words, defining M(ε) = M0 +M1ε,

DM1val(M0) = valO∗(M0)(D M(0)) .
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Matrix games
Impossibility
Bounds
Semi-algebraic theory

Kohlberg 1974

Theorem

There is a stochastic game such that

val(Γλ) =
1−

√
λ

1− λ
= 1−

√
λ+ o(

√
λ) .
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Matrix games
Impossibility
Bounds
Semi-algebraic theory

Filar and Vrieze 1997

Theorem

Consider a stochastic game Γ with λ > 0. For all perturbations H,

|val(Γ + Hε)− val(Γ)| ≤ ε

λ
C (Γ,H) .
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Matrix games
Impossibility
Bounds
Semi-algebraic theory

Solan 2003

Theorem

Consider a stochastic game Γ with λ ≥ 0. For all perturbations H
that neither perturb the discount factor (λ̃ = 0)
nor introduce new transitions,

|val(Γ + Hε)− val(Γ)| ≤ εC (Γ,H) .
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Semi-algebraic theory

Theorem

Consider a stochastic game Γ with λ ≥ 0. For a perturbations H,
where, if λ = 0, then H does not introduce new transitions, then

ε 7→ val(Γ + Hε) is a Puiseux series.
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State of affairs

In many reasonable cases, the marginal value exists.

How can we compute it?
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Matrix games
Impossibility
Bounds
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Oliu-Barton and Attia 2019

Theorem

Consider a stochastic game Γ with λ > 0.
Then, val(Γ) is the unique solution of

val(∆k − z∆0) = 0 ,

where ∆k and ∆0 are matrices constructed from Γ
and ∆0 is strictly positive.

Raimundo Saona Marginal values of Stochastic Games



Preliminaries
Previous results

Results
Wrapping up

Main Statements
Sketch proofs
Minor Statements

Results

Raimundo Saona Marginal values of Stochastic Games



Preliminaries
Previous results

Results
Wrapping up

Main Statements
Sketch proofs
Minor Statements

Marginal discounted value

Theorem

Consider a stochastic game Γ with λ > 0 and a perturbation H.
Then, DH val(Γ) is the unique z ∈ R satisfying

valO∗(Γ)

(
DH ∆k − val(Γ)DH ∆0 − z ∆0

)
= 0 .
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Marginal undiscounted value

Theorem

Consider a stochastic game Γ with λ = 0
and a (undiscounted) perturbation H = (g̃ , q̃, λ̃ = 0).
Asume that ε 7→ val(Γ + Hε) is continuous at zero.
Let p be a polynomial such that, for all ε > 0 small enough,

p(ε, val(Γ + Hε)) = 0

and such that ∂2p(0, val(Γ)) ̸= 0.
Then,

DH val(Γ) = −∂1p(0, val(Γ))

∂2p(0, val(Γ))
.
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Sketch proof: Marginal discounted value

Sketch proof.

For every ε, define the matrix game M(ε) := ∆k
ε − val(Γ + Hε)∆0

ε.
By Oliu-Barton and Attia, for all ε, we have val(M(ε)) = 0 .
Differentiating, by Mills, we have

D val(M)(0) = valO∗M(0)(D M(0))

= valO∗M(0)(DH ∆k − val(Γ)DH ∆0 − DH val(Γ)∆0)

= 0 .

Half-true: O∗M(0) = O∗(Γ) is not proven in full generality.
Instead, take optimal strategies and Taylor approximations.
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Sketch proof: Marginal undiscounted value

Sketch proof.

Consider the polynomial p such that p(ε, val(Γ + Hε)) = 0
and ∂2p(0, val(Γ)) ̸= 0.
Differentiating, we obtain

D p(·, val(Γ+H·))(0) = ∂1p(0, val(Γ))+∂2p(0, val(Γ))DH val(Γ) = 0 .

Reordering

DH val(Γ) = −∂1p(0, val(Γ))

∂2p(0, val(Γ))
.

Great, but where does p come from?
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Matrices ∆k and ∆0, explained

Consider the perturbed Big Match.
Fix a pure stationary strategy (i , j) = (Top, Left).
The induced Markov Chain has payoffs

g(i , j) = (1, 1 + ε, 0)⊤

and transition matrix

Q(i , j) =

 1 0 0
1− ε ε 0
1 0 1


Then,

∆0
ε(i , j) = det(Id − (1− λ)Q) = λ2(1− ε(1− λ)) .

Also,
∆k

ε (i , j) = λ2(1 + ε) .
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Example, perturbed
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Oliu-Barton and Attia 2019

Theorem

Consider a stochastic game Γ with λ > 0.
Then, val(Γ) is the unique solution of

val(∆k − z∆0) = 0 ,

where ∆k and ∆0 are matrices constructed from Γ
and ∆0 is strictly positive.
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Origin of polynomial for marginal undiscounted value

Theorem

Consider a stochastic game Γ with λ = 0
and a (undiscounted) perturbation H = (g̃ , q̃, λ̃ = 0).
Then, there is an explicit finite set of candidate polynomials
including a polynomial p such that

p(ε, val(Γ + Hε)) = 0

but not necessarily ∂2p(0, val(Γ)) ̸= 0.
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Limit and marginal value

We know that
lim
λ→0

val(Γλ) = val(Γ0) .

Does this occur with the marignal values?
No,

lim
λ→0

DH val(Γλ) ̸= DH val(Γ0) .
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Wrapping up
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Marginal discounted value

Theorem

Consider a stochastic game Γ with λ > 0 and a perturbation H.
Then, DH val(Γ) is the unique z ∈ R satisfying

valO∗(Γ)

(
DH ∆k − val(Γ)DH ∆0 − z ∆0

)
= 0 .
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Marginal undiscounted value

Theorem

Consider a stochastic game Γ with λ = 0
and a (undiscounted) perturbation H = (g̃ , q̃, λ̃ = 0).
Asume that ε 7→ val(Γ + Hε) is continuous at zero.
Let p be a polynomial such that, for all ε > 0 small enough,

p(ε, val(Γ + Hε)) = 0

and such that ∂2p(0, val(Γ)) ̸= 0.
Then,

DH val(Γ) = −∂1p(0, val(Γ))

∂2p(0, val(Γ))
.
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Question for Stochastic Games

Definition (Marginal value)

Consider a stochastic game Γ and a perturbation H.
The marginal value is

DH val(Γ) := lim
ε→0+

val(Γ + Hε)− val(Γ)

ε
,

i.e., the right derivative at zero of ε 7→ val(Γ + Hε).

To appear in Mathematics of Operations Research
https://doi.org/10.1287/moor.2023.0297
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Questions

Definition (Value-positivity problem)

Is the value function increasing?

Definition (Functional form problem)

What is the value function and some optimal strategy function?

Definition (Uniform value-positivity problem)

Can the max-player guarantee the unperturbed value
in the perturbed game with a fixed strategy?
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Extras
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Perturbing the discount factor in Stochastic Games

Consider a Stochastic Game Γ and its parametrized polynomial
matrix game Mz := ∆k − z∆0.

Lemma (Value-positivity)

For all z ∈ R, if Mz is value-positive, then, for all small λ,

valλΓ ≥ z .

Lemma (Uniform value-positivity)

For all z ∈ R, if Mz is uniform value-positive, then there exists a
fixed strategy p ∈ (∆[m])n such that, for all λ sufficiently small,

valλ(Γ; p) ≥ z .
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